Peripherally derived FGF21 promotes remyelination in the central nervous system.
نویسندگان
چکیده
Demyelination in the central nervous system (CNS) leads to severe neurological deficits that can be partially reversed by spontaneous remyelination. Because the CNS is isolated from the peripheral milieu by the blood-brain barrier, remyelination is thought to be controlled by the CNS microenvironment. However, in this work we found that factors derived from peripheral tissue leak into the CNS after injury and promote remyelination in a murine model of toxin-induced demyelination. Mechanistically, leakage of circulating fibroblast growth factor 21 (FGF21), which is predominantly expressed by the pancreas, drives proliferation of oligodendrocyte precursor cells (OPCs) through interactions with β-klotho, an essential coreceptor of FGF21. We further confirmed that human OPCs expressed β-klotho and proliferated in response to FGF21 in vitro. Vascular barrier disruption is a common feature of many CNS disorders; thus, our findings reveal a potentially important role for the peripheral milieu in promoting CNS regeneration.
منابع مشابه
P 45: De- and Remyelination Affect Cognitive and Locomotor Abilities in Mice
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammatory and neurodegenerative processes. One of its pathophysiological hallmarks is demyelination, a consequence of oligodendroglial cell death leading supply shortfall and missing electrical insulation to axons. Demyelination induced consequences on neuronal network activity and subsequen...
متن کاملRegenerative Capacity of Macrophages for Remyelination
White matter injury, consisting of loss of axons, myelin, and oligodendrocytes, is common in many neurological disorders and is believed to underlie several motor and sensory deficits. Remyelination is the process in which the insulative myelin sheath is restored to axons, thereby facilitating recovery from functional loss. Remyelination proceeds with oligodendrocyte precursor cells (OPCs) that...
متن کاملA monoclonal natural autoantibody that promotes remyelination suppresses central nervous system inflammation and increases virus expression after Theiler's virus-induced demyelination.
We have used an established experimental model of multiple sclerosis to investigate the potential beneficial relationship between natural autoimmunity and remyelination after central nervous system (CNS) demyelination. Intracerebral infection of SJL/J mice with Theiler's murine encephalomyelitis virus (TMEV) produces chronic, progressive, inflammatory CNS demyelination. Chronically infected SJL...
متن کاملO1: Modeling of Mesenchymal Stem Cell-Derived Magnetite Nanoparticles for The Rehabilitation of Immune System Function and Reducing Inflammation and Promoting Myelination in the Treatment of MS Disease
By Using the modeling of the mesenchymal (bone marrow) stem cell nanoparticles, the reinstatement of the immune system leads to the treatment of MS, result in the formation of a new immune system for the body by stem cell. The presence of stem cells promotes and strengthens myelination, and that, using simulation and 3D modeling, stem cells can be transmitted correctly to the target and place o...
متن کاملThe Influence of Platelet-derived Growth Factor and Fibroblast Growth Factor 2 on Oligodendrocyte Development and Remyelination
Title: THE INFLUENCE OF PLATELET-DERIVED GROWTH FACTOR AND FIBROBLAST GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION Author: Joshua C. Murtie Ph.D. (2004) Thesis Directed By: Regina C. Armstrong Ph.D. Professor, Department of Anatomy Physiology, and Genetics ABSTRACT: Multiple sclerosis (MS) is a demyelinating disease of the central nervous Multiple sclerosis (MS) is a demyeli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 127 9 شماره
صفحات -
تاریخ انتشار 2017